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Abstract

Fully-cured aromatic polyimides were prepared from various combinations of five
dianhydrides and six diamines.  When heated progressively under constant load, most
of the films elongated rapidly near their glass transition temperatures.  In about half of
the nineteen materials, the strain was self-limiting Ð a possible indication of strain-
induced crystallinity.  The presence of crystallinity was established unambiguously for
one material.
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Introduction

Polyimide films are durable, radiation-resistant materials that are useful as electrical
insulation, in thermal blankets, as windows and barrier films, as supports in structures
such as deployable solar arrays, and potentially, in solar sails and large inflatable
platforms or reflectors.  It is of interest to try to orient polyimides because the stiffness,
strength and dimensional stability of most glassy or crystallizable polymers can be
improved by stretch-orientation.  In fact, commercial films such as Kapton¨ (DuPont)
and Upilexª (Ube) are probably biaxially oriented.

Stretching is also commonly used to improve piezoelectric and photorefractive
materials.  As polyimides are considered for these applications, it will be useful to
understand how they respond to stretching.

The two-step synthesis of polyimides1 provides two opportunities to introduce
orientation.  First, the soluble amic acid precursor may be stretched.  It may be possible
to maintain or enhance the orientation as the succeeding imidization reaction is carried
out thermally or chemically.  This approach has been used both with fibers2 and with
films.3  A disadvantage is the difficulty of managing a stretching process that is coupled
with simultaneous solvent outgassing and a high-temperature curing reaction.

A second and potentially simpler alternative is to stretch the fully-imidized material.4

This requires that the polymer in question behave as a thermoplastic;  fortunately, many
such materials have been discovered.  In the present feasibility study, 19 different fully-
cured polyimides were screened using thermal deformation analysis (TDA).  The TDA
technique, which involves heating to progressively higher temperatures under a
constant load, has been useful in the qualitative study of stretch-induced
crystallization.5

Experimental

Each polyimide was prepared from stoichiometric amounts of purified diamine and
dianhydride.6  Acronyms are summarized in Table 1.
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Table 1.  Polyimide Monomers
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Diamines

3,3'-ODA
O NH2NH2

4,4'-ODA
O

NH2NH2

3,4'-ODA
O

NH2

NH2

1,3-APB O OH2N NH2

3,3'-DABP
NH2NH2

O

4,4'-DABP

NH2NH2

O

Films were cast on soda-lime glass plates, dried in a reduced-humidity enclosure at
room temperature, and cured in air-circulating ovens at 100¡, 200¡ and 300¡C
successively, holding for 1 hour at each temperature.

A density gradient column was prepared from aqueous sodium bromide with 2-
propanol as a wetting agent.

The thermal deformation apparatus7 is shown schematically in Figure 1.  The film
sample was gripped by stainless-steel clamps that were tightened using screws.  To
prevent slipping and to help prevent film tearing at the grip, a piece of compliant
quartz felt was placed between the film and the clamping strip.  The initial specimen
dimensions between clamps were 13 wide x 20 mm long.
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Dead-weight loading was applied via a chain attached to a swivel and a wire that ran
over two pulleys to a long-stroke DC displacement transducer.  Nominal stress in all
cases was 7.0±1.8 MPa.

After the weight was applied, the displacement readout was zeroed at room
temperature and the oven temperature was ramped to 350¡C.  The initial ramp rate was
10¡C/min., but above 200¡C the oven could only maintain about 4.5¡C/min.  Noticeable
stretching began 18 to 58 minutes into the TDA experiment, depending on the polymer.
With this experimental approach, both the strain rate and the ultimate strain are
determined by the material behavior rather than being controlled by the apparatus.

Results and Discussion

The TDA traces are assembled in Figs. 2-6.  Three distinct regions are evident in the
sigmoidal curves.  The first region is below the softening point, where very little strain
occured.  Then, most samples elongated fairly rapidly over a range of approximately
20¡C beginning near the glass transition temperature.  If the sample did not break at this
point, there followed a range of temperatures over which the strain rate was very small
again.  This plateau at longer times, when it was seen in other polymers, has been
attributed8,9 to strain-induced crystallization.

Although property improvements can be obtained by stretching materials that do not
crystallize,10 crystallization can be helpful.  The nascent crystals can serve as physical
crosslinks, preventing stress relaxation during the stretching process and allowing a
greater degree of orientation to be produced.  In addition,  crystallizing films can be
annealed under stress ("heat set") to stabilize them against relaxation and shrinkage
near the glass transition temperature.  This raises their use temperatures relative to
amorphous materials.

Many thermoplastic polyimides form metastable crystals during solution imidization 11

but with the exception of very rigid or rod-like chains3,12, they do not usually crystallize
spontaneously upon cooling from the melt.13   It is remarkable, therefore, that of the 19
materials in the present screening study, several became cloudy and 10 exhibited well-
defined plateaux in the TDA experiment.  Strain-induced crystallization could thus be a
very general route to improved properties in aromatic polyimides.

The theory of simultaneous stretching and crystallization is not well developed; most
treatments rely heavily on simplifying assumptions.14  There is even disagreement on
whether the enhanced rate of crystallization arises primarily from nucleation or crystal
growth.15,16   It is clear, however, that the degree of orientation created in the amorphous
polymer is a key variable.

With this in mind, it appears that among the polymers studied here, those that contain
the 3,3'- diamines may have melt viscosities too low to allow efficient orientation.  They
tend to stretch rapidly and break under constant load.  At the other extreme was the
4,4'-DABP/BPDA, which did not stretch appreciably at all even though the starting film
is clear and flexible, with a Tg of 302¡C.  In between, we find for example the polymers
containing 3,4'-ODA.  These readily strain-harden, which makes them rather forgiving
in terms of processing.  Although the details of the TDA responses of the individual
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polymers may depend somewhat on molecular weight, all the samples in the present
study were prepared at the highest molecular weight practical, so it is believed that
qualitative comparisons between materials should be valid.

In the discussion above, cloudiness and the leveling-off strain in the TDA experiment
were taken as evidence for crystallization.  Neither, of course, is definitive.  Cloudiness
would ordinarily imply the presence of crystallites or voids that are large enough to
scatter visible light.  In the present experiments stretching also produced a surface
roughening, perhaps by accentuating the texture on the surface of the as-cast film.  One
side of the film remained shiny, however, and was quite featureless in the scanning
electron microscope at 1000X.  It is not known whether the air side or the side that had
been cast against the glass plate became roughened, but the scattering was sufficient to
thwart attempts to measure birefringence with prism-coupled or Abbe refractometers.
Some of the films appeared to have a sheen that might be produced by light interacting
with crazes.

Figure 7 is a differential scanning calorimetry scan of one of the materials that may have
crystallized, 3,4'-ODA/ODPA.  This particular specimen was stretched isothermally at
260¡C.  There is a melting peak near 320¡C, with a total melting endotherm of 21 J/g.
Although the heat of fusion of this polymer is not known, comparison can be made with
LARCª-CPI and with Mitsui's Aurum, which have heats of fusion of 92 J/g and 139
J/g of crystals respectively.17,18  By this estimate, then, the crystallinity of the stretched
3,4Õ-ODA/ODPA may be as high as 20%.  The shape of the DSC curve suggests,
however, that there may have been some Òcold crystallizationÓ between the Tg (ca.
230¡C) and the onset of melting.  If a stretched sample is annealed for 30 min at 260¡C, it
exhibits two endotherms, one at 320¡C and a much smaller one with a peak at 275¡C.
The total heat of melting for the two populations of crystals is ~22 J/g of polymer.

Density is often another useful indicator of crystallinity.  Accordingly, stretched and
unstretched 3,4'-ODA/ODPA films were compared.  Although the oriented film had a
tensile modulus in the stretch direction over twice as high as that of an unstretched film,
its density (1.3950 g/cm3) was only 1.1% higher.  Given that the crystal density could be
expected to be 13% higher than that of the completely amorphous polymer19, and
assuming that there are no unwetted voids, 8% crystallinity would be inferred for this
specimen.

Finally, it is known4 that when 3,4'-ODA/ODPA is stretched isothermally just above Tg,
it undergoes strain-induced crystallization when the strain exceeds approximately 2.5.
The X-ray diffraction pattern20 in Figure 8 shows conclusively that 3,4'-ODA/ODPA
films stretched isothermally to a strain of 5 are crystalline, with a fiber repeat distance of
20.8�.  A systematic search21 for extended conformations of this polymer readily finds
several with a repeat unit end-to-end length of 20.2� and an angular mismatch of only
4¡; minor adjustments to bond angles and torsions would easily bring this prediction
into agreement with experiment.

It seems likely that other polymers among those studied will crystallize well under
suitable stretching conditions.  TDA provides very useful guidance as a starting point
for further (e.g. isothermal) stretching experiments.
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Conclusions

TDA is a useful screening tool for stretch-orientation.  With it, 10 candidates for further
optimization were identified.  Structural requirements for successful crystallization
appear to include both a relatively compact molecular conformation and a high enough
melt viscosity just above Tg to sustain a fairly high degree of orientation.
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Figure 1.   Schematic of TDA apparatus
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Figure 2.  TDA behavior of 3,3Õ-ODA-containing polyimides
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Figure 3.  TDA behavior of 4,4Õ-ODA-containing polyimides.



Figure 4.  TDA behavior of 3,4Õ-ODA-containing polyimides
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Figure 5.  TDA behavior of 3,3Õ-DABP-containing polyimides
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Figure 6.  TDA behavior of 4,4Õ-DABP-containing polyimides
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Figure 7.  DSC of isothermally-stretched 3,4Õ-ODA/ODPA



Figure 8.  Flat-plate X-ray photo of 5X-stretched 3,4ÕODA/ODPA polyimide
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